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Abstract
Making use of a dynamical invariant operator, we obtain a quantum mechanical
solution of a damped harmonic oscillator having time-dependent frequency with
and without inverse quadratic potential. We confirm that the uncertainty relation
is always larger than h̄/2 in both the number and thermal state. We obtain a
density operator satisfying the Liouville–von Neumann equation, and use its
diagonal elements to calculate various expectation values in the thermal state.

PACS numbers: 03.65.Ge, 03.65.−w, 05.30.−d, 05.70.−a

1. Introduction

Undoubtedly, vibration is one of the most dominant physical phenomena that we meet in
everyday life and for small oscillation it can be approximated to harmonic oscillator motion.
Since the birth of quantum physics, the investigation of the harmonic oscillator has contributed
to the development of theoretical physics [1]. The quantum mechanical problems of explicitly
time-dependent harmonic oscillators have been of great interest in the literature of physics.

The problem of the quantum oscillator with time-dependent frequency has been treated
with other methods earlier by Feynman [2] and Schwinger [3]. The same problem in terms of
coherent states was considered in detail in the book by Perelomov [4].

There are three kinds of methods to find the quantum solution of a time-dependent
harmonic oscillator: the propagator method [5–7], the invariant operator method [8–13]
and the unitary transformation method [14–17]. We use the invariant operator method and
the unitary transformation method together to evolve the quantum and statistical theory of a
damped harmonic oscillator of time-dependent frequency with and without inverse quadratic
potential. Since the introduction of the invariant quantity by Lewis [18, 19], the relation
between time-dependent harmonic oscillator and its dynamical invariant operator has been fully
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discussed in the literature [20–22]. The quantum solution of the harmonic oscillator with time-
dependent frequency and inverse quadratic potential is treated by Kaushal and Parashar [23].
Recently, invariant quantities for three-dimensional time-dependent Hamiltonians have been
found that are applicable to a system of Coulomb interacting particles subject to a time-
dependent quadratic potential [24].

The Liouville–von Neumann approach to nonequilibrium dynamics has been introduced
in the literature [25], and is applicable to both the time-dependent harmonic and unharmonic
oscillator. The density operator of the system obtained by taking advantage of the Schrödinger
solution can be used to calculate various expectation values of the thermal state.

In section 2, we investigate the quantum mechanical solution and thermal properties of the
damped harmonic oscillator with time-dependent frequency. A similar explanation of damped
harmonic oscillator with time-dependent frequency and inverse quadratic potential is contained
in section 3. Finally, section 4 summarizes this paper, with conclusions about the physical
results of the system.

2. Harmonic oscillator of inversely decreasing frequency

The Hamiltonian for the damped harmonic oscillator that has time-dependent frequency is
given by

Ĥ = e−2βt p̂
2

2m
+

1

2
e2βtmω2(t) x̂2, (1)

where β is the damping constant. We consider the case that the frequency decreases inversely
with time. Then, ω(t) can be written as

ω(t) = ω0

t
, (2)

where ω0 is positive constant with no dimension. The classical equation of motion satisfying
equation (1) is

¨̂x + 2β ˙̂x +
(ω0

t

)2
x̂ = 0. (3)

We only consider the underdamped case limited by 0 < t < ω0/β. Then, the classical solution
of the above equation is

x̂(t) = e−βt t1/2[C+ Iν(βt) + C− I−ν (βt)], (4)

where C+ and C− are integral constants, Iν(z) is the modified Bessel function of the first kind
and subscript ν is given by

ν = 1
2

√
1 − 4ω2

0. (5)

From the definition of invariant operator, we can easily confirm that the invariant
operator, Î , must satisfy the following relation:

dÎ

dt
= ∂Î

∂t
+

1

ih̄
[Î , Ĥ ] = 0. (6)

Let us write the trial invariant operator in quadratic form:

Î (t) = A1(t)p̂
2 + A2(t)(x̂p̂ + p̂x̂) + A3(t)x̂

2, (7)

where the coefficientsA1(t) ∼ A3(t)must be determined. Substitution of equations (1) and (7)
into equation (6) gives them. Then, we can obtain the full invariant operator as

Î (t) = 1

2�

{
�2

s2(t)
x̂2 + [me2βt ṡ(t) x̂ − s(t)p̂]2

}
, (8)
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where s(t) and � are given as, respectively,

s(t) = e−βt t1/2[c1I
2
ν (βt) + c2Iν(βt)I−ν(βt) + c3I

2
−ν(βt)]

1/2, (9)

�2 = 4c1c3 − c2
2

4
m2t2

×
{
Iν(βt)

[(
1

2t
− β

)
I−ν(βt) +

β

2
(I−ν−1(βt) + I−ν+1(βt))

]

− I−ν(βt)
[(

1

2t
− β

)
Iν(βt) +

β

2
(Iν−1(βt) + Iν+1(βt))

]}2

. (10)

We can check that these satisfy the following differential equations, respectively, by direct
differentiation:

s̈ + 2βṡ +

(
ω0

t

)2

s − �2

m2s3
e−4βt = 0, (11)

�̇ = 0. (12)

From equation (12) we can confirm that � is a constant of motion. The eigenvalue equation
of Î can be written as

Î |n〉 = λn|n〉. (13)

Equation (13) with equation (8) cannot be solved easily, as it is very complicated. Therefore,
to simplify the problem, we perform unitary transformation of it as

Î ′ = Û−1Î Û , (14)

where the unitary operator Û is given by

Û = exp

[
ime2βt ṡ

2h̄s
x̂2

]
. (15)

Then, the invariant operator may be converted simply to

Î ′ = − h̄2s2

2�

∂2

∂x̂2
+

�

2s2
x̂2. (16)

We can write the eigenvalue equation of I ′ as

Î ′|n′〉 = λn|n′〉. (17)

For more simplification, we introduce the variable X̂:

X̂ =
√
�

s
x̂. (18)

Then, equation (16) can be expressed with this variable as

Î ′ = − h̄2

2

∂2

∂X̂2
+

1

2
X̂2, (19)

and the eigenvalue equation of this has the following form:

Î ′|N ′〉 = λn|N ′〉, (20)

where |N ′〉 is related with |n′〉 by

|N ′〉 = 4
√
s2

�
|n′〉. (21)
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Since equation (19) is of the same form as the Hamiltonian of the ordinary simple harmonic
oscillator with unit mass and frequency, we can easily identify its eigenstate and eigenvalue
as, respectively,

〈X̂|N ′〉 = 4
√

1

h̄π

1√
2nn!

Hn

(
1√
h̄
X̂

)
exp

(
− 1

2h̄
X̂2

)
, (22)

λn = h̄(n + 1
2 ). (23)

Using equations (18) and (21), equation (22) can be converted in terms of x̂ as

〈x̂|n′〉 = 4
√

�

h̄πs2

1√
2nn!

Hn

(√
�

h̄s2
x̂

)
exp

(
− �

2h̄s2
x̂2

)
. (24)

The relation between eigenstates of Î and Î ′ can be written as

〈x̂|n〉 = Û〈x̂|n′〉. (25)

Applying equation (15) to the above equation gives

〈x̂|n〉 = 4
√

�

h̄πs2

1√
2nn!

Hn

(√
�

h̄s2
x̂

)
exp

[
1

2h̄

(
imṡ

s
e2βt − �

s2

)
x̂2

]
. (26)

The x̂ space Schrödinger solution 〈x̂|ψn〉 of Hamiltonian, equation (1), is the same as the
eigenstate of Î , except for the time-dependent phase factor, γn(t) [27]:

〈x̂|ψn〉 = 〈x̂|n〉eiγn(t). (27)

Substitution of the above equation into the Schrödinger equation gives

h̄γ̇n(t) = 〈φn|
(

ih̄
∂

∂t
− Ĥ

)
|φn〉. (28)

Making use of equation (1), the above equation can be easily solved as

γn(t) = −�

m

(
n +

1

2

)∫ t

0

1

s2(t ′)
e−2βt ′ dt ′. (29)

Then, substitution of equations (26) and (29) into equation (27) gives the full wavefunction as

〈x̂|ψn〉 = 4
√

�

h̄πs2

1√
2nn!

Hn

(√
�

h̄s2
x̂

)
exp

[
1

2h̄

(
imṡ

s
e2βt − �

s2

)
x̂2

]

× exp

[
−i

�

m

(
n +

1

2

)∫ t

0

1

s2(t ′)
e−2βt ′ dt ′

]
. (30)

This is the exact solution of the Schrödinger equation for the given system. We show the
absolute square of this in figure 1 for n = 1. We used c1 = c3 = 1, c2 = 0, m = 1 and h̄ = 1
for all figures.

We can obtain the variation of x̂ and p̂ in number state, respectively, as

!x̂ = [〈ψn|x̂2|ψn〉 − (〈ψn|x̂|ψn〉)2]1/2

=
√
s2h̄

�

(
n +

1

2

)
, (31)

!p̂ = [〈ψn|p̂2|ψn〉 − (〈ψn|p̂|ψn〉)2]1/2

=
√
h̄�

s2

[
1 +

(
msṡ

�

)2

e4βt

](
n +

1

2

)
. (32)
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Figure 1. First excited probability density |〈x̂|ψ1〉|2 as a function of position x̂ and time t for
ω0 = 0.3 and β = 0.1.

By multiplying the above two equations, we can obtain the uncertainty relation

!x̂!p̂ = h̄

√
1 +

(
msṡ

�

)2

e4βt

(
n +

1

2

)
. (33)

This differs from the uncertainty relation for the ordinary simple harmonic oscillator and is
always larger than h̄/2. The magnitude of the uncertainty relation becomes larger as ṡ increases.
In other words, if the system varies rapidly with time, it becomes more uncertain.

The uncertainty relation of the q-deformed harmonic oscillator also differs from the
uncertainty relation for the simple harmonic oscillator [28]. As the quantum number increases,
the uncertainty relation of the time-dependent frequency increases while that of the q-deformed
harmonic oscillator decreases.

The mechanical energy of the system can be written as

E(t) = 1

2
mẋ2 +

1

2
m
(ω0

t

)2
x2. (34)

The nth order of quantum mechanical energy can be obtained by replacing ẋ in equation (34)
with the corresponding expression containing p̂ and averaging with respect to |ψn〉 as

En(t) = e−4βt 1

2m
〈ψn|p̂2|ψn〉 +

1

2
m
(ω0

t

)2
〈ψn|x̂2|ψn〉. (35)

Taking advantage of equation (30), the above equation can be calculated as

En(t) = h̄�

2m

[
1

s2
e−4βt +

m2

�2

(
ṡ2 +

(ω0

t

)2
s2

)](
n +

1

2

)
. (36)

Classically, we can define the action integral as J (t) = ∮
p dx which is adiabatically

an invariant quantity [29]. In the case of this oscillatory system, it is given by J (t) =
2πE(t)e2βt/ω(t). Let us suppose that the classical mechanical energy is exactly known at
time t0. Then, by equating J (t) = J (t0), we can obtain it at arbitrary time t as

E(t) = E(t0)
t0

t
e−2β(t−t0). (37)

We compare equations (36) and (37) in figure 2. They decrease in a similar fashion, although
there is small difference between them.

We consider an ensemble of particles that satisfies the given time-dependent harmonic
oscillator motion. Let us assume that these particles conform to a Bose–Einstein distribution
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Figure 2. Comparison of quantum (solid curve) and classical (dot curve) energy for β = 0.35 and
ω0 = 0.2. We used quantum and classical energy given in equations (36) and (37), respectively.
We chose n = 0 for quantum mechanical energy and E(t0) = 0.06 where t0 = 1 for classical one.

function at equilibrium temperature T . The density operator satisfies the Liouville–von
Neumann equation

∂ρ̂(t)

∂t
+

1

ih̄
[ρ̂(t), Ĥ ] = 0. (38)

We can write the partition function of the system as

Z(t) =
∞∑
n=0

〈ψn(t)|e−βb�Î (t)|ψn(t)〉, (39)

where βb = 1/(kbT ) and kb is Boltzmann’s constant. After performing summation,
equation (39) becomes

Z(t) = 1

2 sinh(βbh̄�/2)
. (40)

The density operator of the system in x̂ space is given by

ρ̂(x̂, x̂ ′, t) = 1

Z(t)

∞∑
n=0

〈x̂|ψn(t)〉 exp

[
−βbh̄�

(
n +

1

2

)]
〈ψn(t)|x̂ ′〉. (41)

Using equation (30), the above equation can be calculated as

ρ̂(x̂, x̂ ′, t) =
[

�

πh̄s2
tanh

(
1

2
βbh̄�

)]1/2

exp

{
iṡm

2h̄s
e2βt (x̂2 − x̂ ′2)

− �

4h̄s2

[
(x̂ + x̂ ′)2 tanh

(
1

2
βbh̄�

)
+ (x̂ − x̂ ′)2 coth

(
1

2
βbh̄�

)]}
. (42)

In obtaining the above equation, we used Mehler’s formula [30]:
∞∑
n=0

(z/2)n

n!
Hn(x)Hn(y) = (1 − z2)−1/2 exp

[
2xyz − (x2 + y2)z2

1 − z2

]
. (43)

As temperature becomes sufficiently high, equation (42) may be approximated to

ρ̂(x̂, x̂ ′, t) ∼ �

s

√
βb

2π
exp

[
iṡm

2h̄s
e2βt (x̂2 − x̂ ′2)− 1

2βbh̄2s2
(x̂ − x̂ ′)2

]
. (44)

If the difference between x̂ and x̂ ′ is sufficiently small compared with
√

2h̄s/(ṡm)e−βt and βb
approaches to zero, equation (44) may be more simply abbreviated to

ρ̂(x̂, x̂ ′, t) ∼ βbh̄� δ(x̂ − x̂ ′). (45)
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On the other hand, at low temperature, equation (42) becomes

ρ̂(x̂, x̂ ′, t) ∼
√

�

πh̄s2
exp

[
iṡm

2h̄s
e2βt (x̂2 − x̂ ′2)− �

2h̄s2
(x̂2 + x̂ ′2)

]
. (46)

The probability that the mass of the oscillator resides at x̂ is obtained by taking the diagonal
elements of equation (42) as

f (x̂) =
[

�

πh̄s2
tanh

(
1

2
βbh̄�

)]1/2

exp

[
− �

h̄s2
tanh

(
1

2
βbh̄�

)
x̂2

]
. (47)

We use this to calculate various expectation values. For high temperature, the above equation
reduces to

f (x̂) ∼ �

s

√
βb

2π
exp

(
−βb�

2

2s2
x̂2

)
. (48)

The expectation value of x̂2 in the thermal state may be obtained from the relation

〈x̂2〉 =
∫ ∞

−∞
x̂2f (x̂) dx̂. (49)

Using equation (48), the above equation can be calculated as

〈x̂2〉 = h̄s2

2�
coth

(
1

2
βbh̄�

)
. (50)

By a similar procedure in p̂ space, we can obtain the expectation value of p̂2 as

〈p̂2〉 = h̄�

2s2

(
1 +

m2s2ṡ2

�2
e4βt

)
coth

(
1

2
βbh̄�

)
. (51)

From equation (39), we can confirm that the expectation value of the invariant operator is
related to the partition function by the following equation:

〈Î 〉� = − ∂

∂βb
lnZ(t). (52)

This expression is exactly the same as that of the energy operator for the ordinary simple
harmonic oscillator. Substitution of equation (40) into the above equation gives

〈Î 〉 = 1
2 h̄ coth( 1

2βbh̄�). (53)

By further evaluation, we easily obtain 〈x̂〉 = 0 and 〈p̂〉 = 0 in the thermal state. The
uncertainty relation is given by the following relation:

!x̂!p̂ = [(〈x̂2〉 − (〈x̂〉)2)(〈p̂2〉 − (〈p̂〉)2)]1/2. (54)

Taking advantage of equations (50) and (51), the above equation can be calculated as

!x̂!p̂ = h̄

2

√
1 +

m2ṡ2s2

�2
e4βt coth

(
1

2
βbh̄�

)
. (55)

This relation simply replaces factor (n + 1/2) of equation (33) with coth(βbh̄ω/2)/2. Since
these factors are constant, the two uncertainty relations have the same time dependency, as
expected.
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3. Harmonic oscillator of inversely decreasing frequency with inverse quadratic
potential

Let us add a singular term to the previous Hamiltonian. Then, we may write the Hamiltonian
as

Ĥ = e−2βt p̂
2

2m
+

1

2
e2βtmω2(t)x̂2 + e−2βt k

2m

1

x̂2
, (56)

where ω(t) is the same as in equation (2) and k is a positive constant. Taking advantage of
Hamilton’s equation of motion, we can derive the classical equation of motion satisfying the
above Hamiltonian as

¨̂x + 2β ˙̂x +
(ω0

t

)2
x̂ − e−4βt k

m2

1

x̂3
= 0. (57)

The invariant operator corresponding to the Hamiltonian, equation (56), may be written as

Î (t) = 1

2�

{
�2

s2(t)
x̂2 + [me2βt ṡ(t)x̂ − s(t)p̂]2 +

ks2

x̂2

}
. (58)

We can perform the same procedure as in the previous case using the unitary operator given
in equation (15) so that the above equation can be transformed to

Î ′ = − h̄2s2

2�

∂2

∂x̂2
+

�

2s2
x̂2 +

s2k

2�

1

x̂2
. (59)

Making use of the relation given in equation (18), the above equation may be simplified to

Î ′ = − h̄2

2

∂2

∂X̂2
+

1

2
X̂2 +

k

2X̂2
. (60)

The eigenstate and eigenvalue of the above equation can be written by [26]

〈X̂|N ′〉 = 4
√

4

h̄

(
2-(n + 1)

-(n + a + 1)

)1/2 (
X̂2

h̄

)(2a+1)/4

La
n

(
X̂2

h̄

)
exp

(
− X̂2

2h̄

)
, (61)

λn = h̄(2n + a + 1), (62)

where La
n is the nth-order associated Laguerre polynomial defined in [30] and a is given by

a = 1

2

(
1 +

4k

h̄2

)
(63)

which is clearly constant. With the same relation given in equation (25), we can obtain the
eigenstate of the untransformed invariant operator as

〈x̂|n〉 =
(
�

h̄s2

)(a+1)/2 ( 2-(n + 1)

-(n + a + 1)

)1/2

x̂a+1/2La
n

(
�

h̄s2
x̂2

)

× exp

[
1

2h̄

(
imṡ

s
e2βt − �

s2

)
x̂2

]
. (64)

By the same procedure as in the previous case, the phase factor of the wavefunction can be
calculated as

γn(t) = −(2n + a + 1)
�

m

∫ t

0

1

s2(t ′)
e−2βt ′ dt ′. (65)



Thermodynamics of quantum harmonic oscillator 2853

Then, we may write the full wavefunction that satisfies the Schrödinger equation as

〈x̂|ψn〉 =
(
�

h̄s2

)(a+1)/2 ( 2-(n + 1)

-(n + a + 1)

)1/2

x̂a+1/2La
n

(
�

h̄s2
x̂2

)

× exp

[
1

2h̄

(
imṡ

s
e2βt − �

s2

)
x̂2

]

× exp

[
−i(2n + a + 1)

�

m

∫ t

0

1

s2(t ′)
e−2βt ′ dt ′

]
. (66)

To simplify the problem, let us choose k = �2. Then the expectation value of the Hamiltonian
can be calculated as

〈ψn|Ĥ |ψn〉 = 1

2
h̄�

[
1

ms2
e−2βt +

m

�2
e2βt

(
ṡ2 +

(ω0

t

)2
s2

)]
(2n + a + 1). (67)

The quantum mechanical energy expectation value is given by the relation

En = e−4βt 1

2m
〈ψn|p̂2|ψn〉 +

1

2
m
(ω0

t

)2
〈ψn|x̂2|ψn〉e−4βt k

2m
〈ψn| 1

x̂2
|ψn〉. (68)

Making use of equation (66), we can calculate the above equation as

En = h̄�

2m

[
1

s2
e−4βt +

m2

�2

(
ṡ2 +

(ω0

t

)2
s2

)]
(2n + a + 1). (69)

Let us suppose that there is an ensemble of boson particles satisfying the same properties
as in the previous section at equilibrium temperature T . Then, using the same relation,
equation (39), we can obtain the partition function as

Z(t) = 1

2eβbh̄�a sinh(βbh̄�)
. (70)

The density operator in x̂ space is given by

ρ̂(x̂, x̂ ′, t) = 1

Z(t)

∞∑
n=0

〈x̂|ψn(t)〉 exp [−βbh̄� (2n + a + 1)] 〈ψn(t)|x̂ ′〉. (71)

Using equation (66), the above equation can be calculated as

ρ̂(x̂, x̂ ′, t) = 2�

h̄s2

√
x̂x̂ ′eβbh̄�aIa

[
�

h̄s2 sinh(βbh̄�)
x̂x̂ ′
]

exp[ux̂2 + u∗x̂ ′2], (72)

where

u = 1

2h̄s

[
iṡme2βt − �

s
coth(βbh̄�)

]
. (73)

In the calculation of equation (72), we used the following relation [30]:
∞∑
n=0

n!

-(n + a + 1)
La
n(x)L

a
n(y)z

n

= (1 − z)−1 exp

(
−z x + y

1 − z

)
(xyz)−a/2Ia

[
2
(xyz)1/2

1 − z

]
, for |z| < 1, (74)

where Ia(y) is a modified Bessel function of the first kind defined as

Ia(y) =
∞∑
j=0

(y
2

)2j+a 1

-(j + 1)-(j + a + 1)
. (75)
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For high temperature, equation (72) can be approximated to

ρ̂(x̂, x̂ ′, t) ∼ 2�

h̄s2

√
x̂x̂ ′Ia

(
x̂x̂ ′

βbh̄
2s2

)
exp

[
imṡ

2h̄s
e2βt (x̂2 − x̂ ′2)− 1

2βbh̄2s2
(x̂2 + x̂ ′2)

]
. (76)

On the other hand, at low temperature it becomes

ρ̂(x̂, x̂ ′, t) ∼ 2�

h̄s2

√
x̂x̂ ′eβbh̄�aIa

[
2�

h̄s2
e−βbh̄�x̂x̂ ′

]

× exp

[
imṡ

2h̄s
e2βt (x̂2 − x̂ ′2)− �

2h̄s2
(x̂2 + x̂ ′2)

]
. (77)

The diagonal element of the density operator is given by

f (x̂) = 2�

h̄s2
x̂eβbh̄�aIa

(
�

h̄s2 sinh(βbh̄�)
x̂2

)
exp

[
− �

h̄s2
coth(βbh̄�) x̂

2

]
. (78)

We can write the expectation value of x̂ in the thermal state in the form

〈x̂〉 =
∫ ∞

0
x̂f (x̂) dx̂. (79)

Using equation (78), the above equation can be calculated as

〈x̂〉 =
√
h̄s2

�
eβbh̄�a

[tanh(βbh̄�)]3/2

[cosh(βbh̄�)]a
-(a + 3/2)

2a-(a + 1)

×2F1

(
3

4
+
a

2
,

4

5
+
a

2
, 1 + a,

1

[cosh(βbh̄�)]2

)
. (80)

By a similar procedure, we calculated several other expectation values:

〈x̂2〉 = h̄s2

2a�
eβbh̄�a

[tanh(βbh̄�)]2

[cosh(βbh̄�)]a
(1 + a)

×2F1

(
1 +

a

2
,

3 + a

2
, 1 + a,

1

[cosh(βbh̄�)]2

)
, (81)

〈
1

x̂

〉
=
√

�

h̄s2
eβbh̄�a

[tanh(βbh̄�)]1/2

[cosh(βbh̄�)]a
-(a + 1/2)

2a-(a + 1)

×2F1

(
1

4
+
a

2
,

3

4
+
a

2
, 1 + a,

1

[cosh(βbh̄�)]2

)
, (82)〈

1

x̂2

〉
= �

h̄s2
eβbh̄�a

1

2aa

1

[cosh(βbh̄�)]a

×2F1

(
1 + a

2
,
a

2
, 1 + a,

1

[cosh(βbh̄�)]2

)
. (83)

4. Summary

Taking advantage of the invariant operator, we obtained the Schrödinger solution for the
harmonic oscillator of inversely decreasing frequency with and without inverse quadratic
potential. We calculated the uncertainty relation and the quantum mechanical energy
expectation value in the number state. By comparing equations (33) and (55), we can confirm
that the uncertainty relation in the thermal state varies in the same fashion as that in the number
state.

Figure 1 shows that the amplitude of given harmonic oscillator decreases with time
depending on the value of damping constant β. The uncertainty relation is always larger
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than h̄/2 in both the number and thermal state. By differentiating with respect to variables
time t and ω0, we can confirm that this relation does not vary significantly with the values
of these variables. The quantum mechanical energy expectation values decrease with time,
which is in agreement with the analysis of classical energy. We determined density operators
to satisfy the Liouville–von Neumann equation and used them to calculate various expectation
values of variables in the thermal state.
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